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Free-surface flows define an area of a great deal of engineering interest. In this paper, we 
present a finite-difference method for an accurate and efficient solution of potential flows with 
a free surface. Boundary-fitted coordinates are used to eliminate the difhculty introduced by 
the free surface. The method is illustrated with applications to problems involving unsteady 
two-dimensional flows. Ct 1987 Academic Press, Inc. 

1. INTRODUCTION 

A free-surface flow problem is a problem of fluid flow involving differential 
equations on fluid domains, parts of whose boundaries, identified as the free surface 
of the fluid, are unknown and must be determined as part of the solution. In this 
paper, a class of free-surface flows, for which the unsteady two-dimensional surface 
waves serve as a model, are considered. The numerical method of this paper 
eliminates the difficulty involving the unknown free surface by imposing boundary 
conditions on a known boundary in a mapped domain. 

Several numerical methods are now available for the computation of potential 
flows with a free surface. A survey of these methods can be found in Yeung [7]. 
The numerical method of this paper is one of the first attempts to use implicit linite- 
difference schemes for nonlinear free-surface computations. The primary features of 
the method include the use of boundary-fitted coordinates and imposing the boun- 
dary conditions on the free surface in their full nonlinear form. The method can be 
used for a class of free-surface problems characterized by the following property: 

The fluid domain has an unknown boundary on which a nonlinear double condition has to be 
imposed. There is a “time-like” variable which is used as the marching variable of the linite- 
difference procedure, and it appears only in the double-condition. An elliptic equation 
independent of the marching variable holds in the fluid domain. 

Numerical results are presented for problems with this property. 

Applications 

Certain three-dimensional steady free-surface flows can be described by a system 
of equations similar to the system governing unsteady two-dimensional surface 
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waves Examples are flows involving “slender” geometries such as slender jets, 
channels of slowly varying width, slender ships. The slenderness will permit us to 
consider one coordinate direction as the “time-like” variable and march along this 
direction. 

The numerical method described in this paper has also been applied to three- 
dimensional steady flows with a free surface. In particular, computations are carried! 
out for two problems. The first problem attempted is the computation of flows in 
channels of varying width. The second problem is the computation of flows past 
slender ships. The problems considered are simplified versions of real-life situations. 
However, the numerical results obtained are encouraging. The success of the 
method of these problems indicates the possibility of employing the method to 
attack a wide variety of water wave problems. 

2. GOVERNING EQUATIONS 

We consider the full, time-dependent, nonlinear equations for water waves in two 
dimensions. The fluid motion is assumed to be irrotational, and the fluid to be 
inviscid and incompressible. Surface tension effects are neglected. Let 0.~~1 be a fixed 
coordinate system in which the Ox axis coincides with the bottom surface $9 of the 
fluid which is assumed to be horizontal. The y axis points vertically upwards. The 
free-surface 9 of the fluid is denoted by its elevation which is described as 
y = T(x, t). Figure 1 shows the physical situation. The fluid disturbance at time t is 
described by a velocity potential 4(.x, y, t) with the fluid velocity M given by V& The 
potential 4 satisfies the Laplace equation in the fluid domain Q, and the momentum 
equations yield Bernoulli’s integral. Hence, 

v2qqx, t) = 0 for x = (x, y) in R (2.1) 

Pk t) -+9,+; IVqq’+ gy= gh,, 
P 

where, 

P is the fluid pressure 

P is the density 

g is the acceleration due to gravity 

1% is the height of the undisturbed surface. 

I32) 

For the surface-wave problem in two dimensions, the system of equations to be 
solved is expressed as 
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FIG. 1. Surface waves. 

v2q5=o in Q 

r,+r,$b,-(by=0 on y=T 

+I + tee + 4.3 + gr= & 0n JI=r 

4.y = 0 on y=o. 

Once 4 is determined, Eq. (2.2) can be used to evaluate p(x, t). 

(2.3) 

(2.4) 

(2.5) 

3. BOUNDARY-FITTED COORDINATES 

The accuracy of boundary conditions in fluid flow problems is very important for 
the accuracy of the entire flow computation. However, for free-surface flows, since 
the boundary is determined as part of the solution, numerical methods encounter 
difficulties in imposing the boundary conditions accurately. The use of boundary- 
fitted coordinates will help overcome these difficulties. 

The basic idea of boundary-fitted coordinates is to transform any given arbitrary 
domain into regions composed of rectangles so that the physical boundaries of the 
problem are mapped to coordinate lines in the mapped space. This feature in the 
numerical methods makes it easy to implement finite-difference schemes. 

For the surface-wave problem in two dimensions the transformation 

(3.1) 
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FIG. 2. Boundary-fitted grid. 

yields a system of boundary-fitted coordinates. Figure 2 shoi~s a grid system in the 
physical domain that was obtained using a rectangular grid in the mapped domain 
Now the system of Eqs. (2.3)-(2.5) gets transformed to 

c 
Adt;c - W34,, + g h,rl - VW, = 0 (3.2) 

H,+ H,qi+C$,=O on q=l 

1 1c 
(3.2) 

h+Z4:-TH++(+gH=gh, on q=l 

4,=0 on q=o (3.4) 

in the mapped domain. In (3.2)-(3.4), A = 1, B= H,,lH, C= (1 + $Hg)/N, and 
D==B~-B2. 

4. &htERICAL METHOD 

The governing equations for the free-surface flows of interest to us possess the 
following form in the computational domain (5, v], t): 

W(L ‘i) =f (4.1) 

K=fAH,H,& 4,) on q=l 

d, =fAH, H,, be> 4,) on rj=l 
(4.2) 

$,=O on ~=0, (4.3) 

where 5’ is an elliptic operator and (4.2) is a system of nonlinear differential 
equations for H and I$ on the boundary q = 1. Equation (4.3) holds on 4 = 0. Were, 
the boundaries 9 = 1 and q =O correspond to the free surface and the bottom 
surface of the fluid, respectively. 
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The basic approach of the numerical method is to first consider H and 4 as 
functions of i: and r alone defined on the line q = 1 and solve the system of Eq. (4.2) 
subject to the auxiliary condition (4.1) in the interior. The condition (4.1) is used to 
determine 4, on v] = 1 which is required in the system (4.2). The problem now is to 
determine H and 4 for all T starting with appropriate initial values for H and 4 at 
an initial z = TV. 

Solving for 4 in the interior, i.e., solving Eq. (4.1) will essentially involve an 
iterative scheme. Since the boundary conditions are nonlinear, their discretization 
will also require an iterative scheme for their solution. In the present numerical 
method, the boundary and the interior computations are performed alternatively 
during each iteration. In other words, the boundary and interior iterative 
procedures are coupled so that both the boundary and the interior values obtained 
for 4 are improved simultaneously. 

Finite Difference Scheme 

The computational domain is represented by a grid system (ri, qj, t,,), where 

ti= (i- 1) A< i = 1, 2, . . . . N 

$=l-(j-1)d’l j= 1, 2, . . . . M 

T,=nAT n = 0, 1, 2, . ..) 

with dc = l/(N - l), Aq = l/(M- 1 j, and AZ chosen to satisfy appropriate accuracy 
criteria. 

With u’ := (H, 4s)T, where 4, denotes the potential 4 on the boundary 9 = 1 one 
can write the system (4.2) in the form 

w, = F( w, WE, (23,). (4.4) 

A second-order accurate Crank-Nicolson discretization of (4.4) is written as 

U’ “+‘=w”+;AT(F”+‘+F’), (4-5 1 

where the superscripts n and n + 1 denote evaluation at z, and rnt 1, respectively. 
However, Eq. (4.5) involves nonlinear terms which will complicate the numerical 
procedure if used directly. Therefore, a form which is somewhat easier to deal with 
numerically and yet maintains the second-order accuracy is obtained in the 
following manner. Define 

p := WC' 4:=& 

D,,F”‘(w, p, q) := F,,.(T,,) wm + FJTJ pm + F&T,) qm 

AF” := D,F”+’ - D,F” 

(4.6) 
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Then p+l :=F(~~“+I, pn+I, f+‘j is obtained by a Taylor’s series expansion as 

F-‘+‘=F’+AF’. (4.7) 

Now (4.5) takes the form 

which can be rewritten in the form 

(I- 4A7 FJ7,)) w”+’ - iA7 F&7,) p”+* = 6”“. (4.9) 

where 

b -*+‘= w”+F’d7-id7 D,?F”++Ar Fy(7;nj q”” j4.10) 

and (4.9) is obtained on substituting for AF’ in (4.8) from (4.6). 
Now p := tvt has to be discretized and we use the central-difference formula 

to obtain 

and 

Xi = $;tF,(7,>), Yi= I- $dt F,,,(7,J: zi= -xi (4.13j 

The linear system of Eqs.. (4.12) will be closed by using appropriate boundary con- 
ditions corresponding to i = 1 and i = N. 

The linear system of Eqs. (4.12) describes the kinematic and dynamic conditions 
on the unknown boundary in the physical domain. However, the right-hand side of 
(4.12) contains the terms y;! + 1 and q; which can be computed only after the poten- 
tial 4 has been determined in the interior. Here, 4; is an approximation to #II on 
y=l, <= Si, and r = 7,. It is computed using the formula 

(q$):’ = (3qy, - 44:; + qs:‘~),/2Llilp7 (4.14) 

which is second-order accurate. The term q;J+ 1 is unknown when the boundary 
vahres are solved for, since it will involve &,’ I, &+ ‘, and &+ r in its computation. 
At any iteration in solving for # in the interior, approximate values of 4:1,’ :, &+ I, 
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and &+ i will be available. Therefore, the boundary system of Eqs. (4.12) can be 
solved after every iteration for the solution of 4 in the interior and successive 
improvements for the boundary and the interior can be obtained simultaneously. 

Solution of cj in the Interior 

The most general form of the elliptic equation (4.1) for problems of interest to us 
is 

Ah,-2B4b,+C&,=D&+ E&,, (4.15) 

where the coefficients A, B, C, D, and E are functions of r, fl, and the free-surface 
elevation. Equation (4.15) can be discretized in the form 

p,di,j= O, (4.16) 

where P, is the discrete equivalent of the elliptic operator P of (4.1), obtained by 
using second-order accurate difference formulas for the partial derivatives 

~S5r=(~i-l,j-2~ij+~i+l,j)/(dT)2 

~~~~(~i+l,j-l~$i~l,j-l~~i+l,j+l+~i-l,j+1~~2A~Avl 

dqq = (di,j-1 -2bi,j+ d&j+ l)/(dr1)2 (4.17) 

d< = !di+ l,j-di- l,j)PAl 

4, = (tii,j-- l- di,j+ 1)/24~. 

The subscripts i and j denote evaluation at the point (ti, qj). The resulting linear 
system of equations is then solved by an iterative scheme such as the line-successive 
over relaxation (line SOR). 

The computational algorithm based on the finite-difference scheme of this section 
is given below. 

ALGORITHM [to compute the free-surface height and the potential for a free- 
surface flow problem by a marching procedure]. 

1. [Initialize] n :=O; z := z,; initialize r, 4 on iI = 1. 
2. [I inside] Solve (4.16) to initialize 4 in the interior. 
3. [Start loop] k :=O; initialize @+I. 
4. [Boundary] Solve (4.12) to obtain r and 4,. 
5. [Interior] Perform one sweep of line-SOR on (4.16). 
6. [Exit?] Exit if tolerance is met; else k := k + 1; go to 4 
7. [Advance] n := n + 1; T := z, 
8. [Stop?] Stop if t, > ~~~~~ else go to 3. 
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5. PROGRAMMING CONSIDERATIONS 

A. Boundary Conditions 

In solving free-surface problems on domains of infinite extent, one needs to keep 
the computational region finite. This makes it necessary to work with a fixed 
boundary and prescribe appropriate boundary conditions at the computational 
boundary. 

For periodic free-surface waves, one can study the waves through a window of 
length equal to one wavelength by imposing the periodicity conditions at the ends. 
Periodic boundary conditions give rise to systems of linear equations whose coef- 
ficient matrices are almost tridiagonal; i.e., the first and the last rows have an 
additional entry in their last and first columns, respectively. In order to preserve 
and take advantage of the tridiagonal structure of the coefficient matrices, a 
modified version of a tridiagonal system solver is used. A discussion of the 
modification is given in Asaithambi [ 11. 

Radiation-type boundary conditions can be used for unsteady flows when there is 
an open boundary. For steady flows, however, radiation-type conditions are not 
widely known. 

B. Initial Iterate for Laplaciun Solver 

Sometimes the iterative procedure for the Laplacian may take a long time to 
converge if the initial iterate is too far from the solution. To make sure that the 
initial iterate is reasonably close to the solution, a linear extrapolation in t is used 
to obtain the first iterate. In particular, the values 0,;: i,” are obtained as 

for the interior values. The boundary values are obtained from the Crank-Nicolson 
marching step. It has been observed that the number of iterations was reduced 
considerably when (5.1) was used instead of merely setting 

The additional storage required to hold c#;; * is thus justified. This technique was 
used in [4] and found to work satisfactorily. 

C. Treatment of Nonlinear Terms 

Earlier, n was mentioned that the scheme (4.5) involves nonlinear terms and will 
complicate the numerical method if used directly. It turns out that it does not 
actually complicate the method, but only makes it slow. However. a close look at 
the scheme with the nonlinear terms taken into account as they appear, indicates 
that the present approach has led to a more efficient way of dealing with the com- 
putations. For instance, if one uses a method like Newton’s method to solve the 
nonlinear equations (4.51, the resulting linear system of equations will still be 
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tridiagonal, but the coefficient matrices Xi, Yi, and Zi will have to be evaluated at 
r, +, instead of T, as in (4.13), and this would mean that they have to be computed 
at each iteration. For a large number of grid points on the free surface, one would 
then spend a lot of time computing the coefficient matrices. 

6. NUMERICAL RESIJL.TS 

The numerical method of Section 4 was obtained as an improvement over a 
similar method developed by Strikwerda and Geer [4] for computing the shape of 
freely falling jets. The desired improvement in terms of computational effort has 
been achieved and the present numerical method can be shown to be formally 
second-order accurate. Since the finite-difference form used is implicit, it is uncon- 
ditionally stable for linear problems. In this section we present the numerical results 
obtained by using the method of Section 4 for computing free-surface flows in two 
dimensions. 

Order of Accuracy 

In order to illustrate the second-order accuracy of the method by a numerical 
example, the following problem has been solved. Two functions h(x, t) and 
4(.x, y, t) are sought which satisfy 

V2q5=Q in (05xX 1, OI~sh(x, t)> (6.1) 

h, d periodic in x with period unity. (6.3) 

The functions f, and fi in (6.2) are chosen so that the solutions tz and 4 are simple 
smooth functions. Then the numerical computation consists in recovering h and 4 
as solutions of (6.1)-(6.3 j. The errors in h and 4 can then be computed and the 
order of the numerical method determined by computing with various mesh sizes. 

The numerical results are obtained for the choices 

h(x, t) = 1 + A sin CU(X - ct), 

4(x, y, t) = B cos w(x - ct) cash U-V. 

The corresponding fi and f2 can be obtained by simply substituting for h and 4 on 
the left-hand sides of (6.2). In the above choices for h and 4, A, B, and c are 
arbitrary constants. The algorithm was tested with the above choices for h and q5 for 
various choices of the grid-parameters N, M, and AZ. The choices for A, B, c, and 
w were: A = 0.001, B = 0.001, c = 1.0, o = 27~. For all computations for which results 



COMPUTATION OF FREE-SURFACE FLBWS 389 

appear below, N = M, AT = 1/(N - 1 ), and marching is carried through r = 0.5. The 
number of grid points in the 5 direction was varied as 21, 41, 5 1, and 61 and the 
tolerance E for the SOR procedure was chosen as lo-‘. Table I shows the errors in 
ir and qS measured in the l2 norm. The columns entitled “order” indicate the order of 
accuracy of the method. The entries in these columns are obtained using the 
formula 

order = (log(e,v,) - log(e,)Y(log(N,) - logiN,)?, (6.4) 

where eN denotes the error in 11 or C$ with computations performed on a Mx N grid. 
The closeness of the entries in the third and fifth columns to -2 indicates that the 
overall accuracy of the method is second order. 

Transient Surface- Wave Problems 

Numerical results are presented for two specific instances of two-dimensional 
transient surface waves and the computational results are compared with previously 
obtained analytical results. 

.4. Standing Waves 

In this subsection, numerical results for the computation of standing waves of 
finite amplitude in water of uniform depth are presented. The initial conditions for 
this problem are obtained from the approximate analytical solution of Tadjbakhsh 
and Keller [5& and the computed solution is compared with the approxrmate 
analytical one. Tadjbakhsh and Keller sought a solution to this problem in the 
form of an expansion in powers of the amplitude of the linearized surface wave. 
They solved the problem based on the following formulation: 

*.?I=0 on y= -d,x=O, II (6.7‘r 

23=q(O,O)-q(n,O). [6,8 ) 

TABLE I 

N-l k,,( x 10-4) Order $,,A x lo-') Order 

20 6.21 38.5 - 
40 1.56 - 2.06 9.57 - 2.06 
50 1.00 - 2.03 6.12 - 2.05 
60 0.70 - 2.03 4.25 - 2.01 
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Their solution is described by 

SyI=Sq (0) + s2vl(l) + f,3p + ots4) 

s* = s$‘“’ + s21p + fs3Ly2) + O(s4) (6.9) 

0 = 00 + +.s2u2 + O(s3) 

In (6.5)-(6.9), y = 4 denotes the bottom of the fluid, y = 0 denotes the undistur- 
bed surface of the fluid, and sq denotes a small disturbance about the undisturbed 
fluid-surface, where s is the steepness of the waves multiplied by n. The waves are 
assumed periodic both in space and time. The period in space is 2n, and o, the 
temporal frequency, is sought as part of the solution. In particular, Tadjbakhsh and 
Keller found that 

o$, = tanh d 

co2 = (90,’ - 120, 3 - 30, - 20;)/32. 
(6.10) 

By examining (6.10) they found that w increases with s for d-c d*, where d* zz 1.07 
and decreases with increasing s for d> d*. Vanden-Broeck and Schwartz [6] have 
computed these waves by a truncated-Fourier series approximation and concluded 
that the second-order approximation due to Tadibakhsh and Keller is an excellent 
approximation for large values of d. 

The computed solutions indicate that, for LZ= 3, the surface profile is not much 
different from the sine wave of linear theory. The nonlinear effects are predominant 
as d decreases, and the wave develops a narrow crest and a broad trough. Figure 3 
shows two different computed profiles for s=O.O7 at t= 7c/2. 

d= 

FIG. 3. Free-surface proliles. 
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The present numerical method is not designed specifically for time-periodic 
problems. However, since the initial solution could ‘be advanced in time without 
any difficulty whatsoever, w, the temporal frequency, could be estimated. For this 
purpose, the free-surface elevation at x =0 is recorded at each time step while 
marching several periods in time. Figure 4 shows a typical time evolution, and, for 
comparison purposes, the analytical solution of Tadjbakhsh and Keller is also 
shown in dotted lines. The nonlinear least-squares program NLZSOL was used to 
compute an approximation or the form 

.h’ 
~(0, t) = A, + 1 A/, cos kot + B, sin kwt: 

k=l 
jO:‘ll) 

The frequency was estimated as 0.866 for d= 1 and 0.980 for d = 3, with s = 0.02, 
whi.le the corresponding results due to Tadjbakhsh and Keller were 0.873 and 0.993, 
respectively. 

Finally, in Fig. 5, the computed profiles of the standing wave for s = 0.05 and 
ri= 0.5 at different times from t = 0 to rc/2 are presented. 

E. Pr3ggressing Wmes 

Numerical results for the computation of surface waves progressing at a uniform 
velocity c are presented in this subsection. The initial conditions for this problem 
have been obtained from a very accurate solution by Schwartz [3], which is based 
on Stokes’ expansion. The governing equations in the frame of reference moving 
with the wave are described by 

Computed Solution 
------ Series Solution 

d=3 5=0.05 

FIG. 4. Surface height as a function of time. 
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0.06 - 

FIG. 5. Free-surface profiles. 

where the change of variables, 

X=x+ct and @=$h+cX, (6.13) 

has been used to obtain the steady-state equations. In (6.13), c is called the phase 
velocity of the progressing waves and K is called the Bernoulli’s constant. Schwartz 
[3] uses two parameters D, the depth of the fluid, and s, the steepness of the waves, 
to describe the surface profile and the potential. With 

c,,= 1 +e-znD and 8, = 1 - e -2,‘D, (6.14) 

the free-surface profile and the potential are parametrically described by 

X= - f (a,,a,/n)sinq-X 
n=l 

Y= f (a, 6,/n) cos rq 
n = I 

CD= -q, 

(6.15) 

where - rc 5 X5 rc. In (6.15), the coefficients a, are expressible as series expansions 
in s, the steepness of the waves, defined as 

2s:=(Y(x=7c)-Y(~=O)). (6.16) 



COMPUTATION OF FREE-SURFACE FLOWS 393 

The expansions of Schwartz [3] have been used in obtaining an initial profile for 
the present computations. 

The present numerical method was tested on these waves and the numerical 
results obtained were compared with the accurate solution of Schwartz. For initial 
conditions, the wave profile and the potential were computed from Schwartz and 
the solution advanced in time. The time-stepping must translate the waves at an 
appropriate speed in the proper direction based on the initial conditions. 
Preliminary computations indicated that the present method does not perform all 
that well for small values of the depth D of the fluid. But, this is due to the lack of 
accuracy in the initial conditions, since we have only taken a total of nine expan- 
sion coefficients for computing the same. However, for larger values of D, the 
method gives excellent results. Figure 6 shows both the accurate and the time- 
stepped profiles at various instants of time, for s = 0.2 and D = 3. The two profiles 
are almost indistinguishable, and it is seen that there are no unwarrented 
oscillations that grow in time, in contrast to the solution obtained by Longuet- 
Higgins and Cokelet [2]. The velocity of the progressing wave was also computed 
using NL2SOL, and it was found to be 0.9976 while Schwartz expansions yield a 
vafue of 0.9978. 

t= 

t=7r 2 

;i/ 

t=O 

FIG. 6. Stokes’ wave profiles. 
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Accuracy Checks 

The computations for the two-dimensional surface wave problems were 
monitored all the way by incorporating the following accuracy checks: 

(i) The average height of the free surface profile must be h,. 

(ii) The sum of the potential and kinetic energies must remain constant at ail 
times. 

As an additional check, the reversibility of the system of equations was verified. 
That is, the system of equations could be solved either in the forward direction or 
the backward direction. By marching up to a certain time and then marching back 
to the starting point, the initial conditions could be recovered within the accuracy 
limits of the method. 

7. CONCLUSIONS 

The numerical method presented here has been shown to be an accurate and 
efficient method for computing free-surface waves. The method has been shown to 
be second-order accurate (Table I) and in agreement with analytical methods. The 
method uses the full nonlinear equations for water waves and hence can be used to 
study many of the nonlinear phenomena of water waves. 
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